

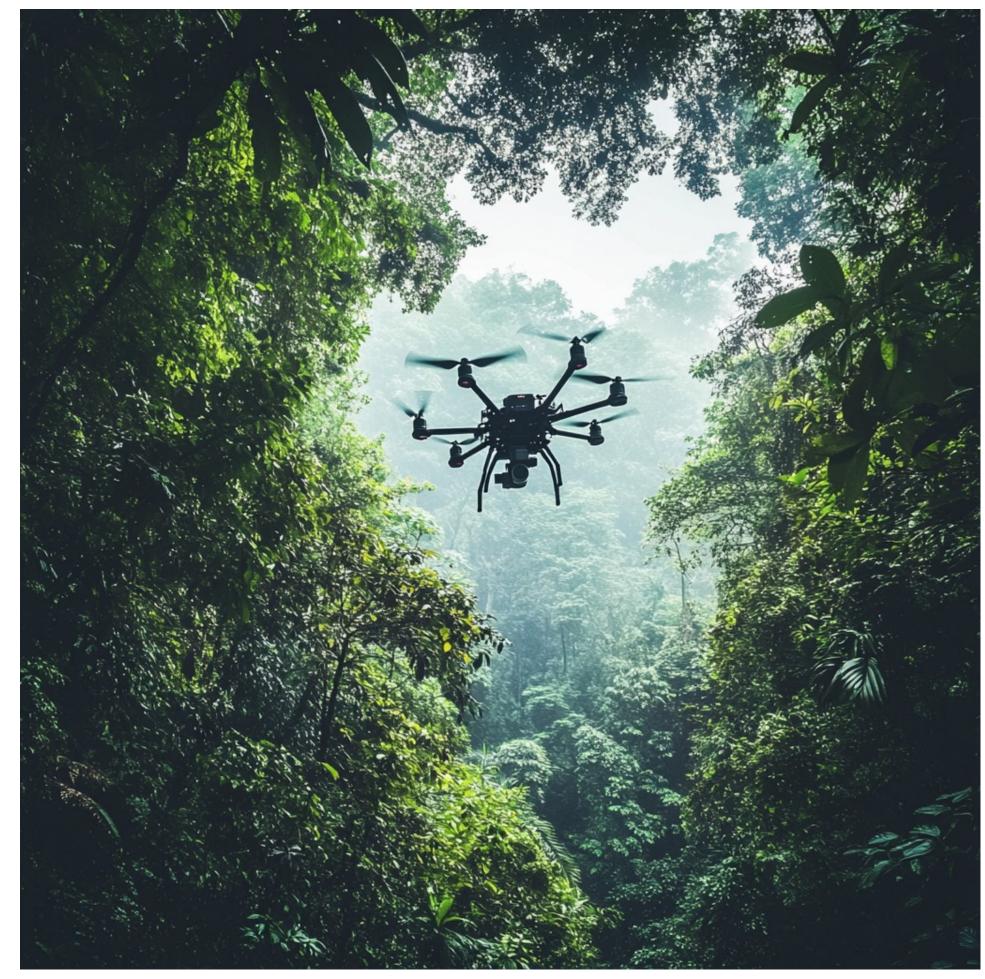
Bridging UAV and Satellite Remote Sensing: Advancing Palm Detection for Amazonian Conservation

Mario Auqui and Dr. Paúl Pauca IRSC Lab Group, Department of Computer Science, Wake Forest University

1. Introduction

- Palms & Why They Matter: Palm trees are critical indicators of tropical forest health, biodiversity, and human activity. They provide vital resources for both wildlife and human communities.
- The Problem: The ability of automated palm detection tools and their ability to generalize to new regions with different ecological conditions is unknown.
- Our Approach: We apply the preexisting PRISM Pipeline [1], a model previously trained on Ecuadorian data, to a new region in Iquitos, Peru.
- Main Goal: We evaluate how well the original model performs and demonstrate that regional adaptation is key to making the pipeline a reliable tool for global monitoring.

Figure 1: Drone in Jungle [2]



References

[1] Cui, K., Zhu, R., Wang, M., Tang, W., Larsen, G. D., Pauca, V. P., Alqahtani, S., Yang, F., Segurado, D., Lutz, D., Morel, J.-M., & Silman, M. R. (2025). Detection and Geographic Localization of Natural Objects in the Wild: A Case Study on Palms (No. arXiv:2502.13023). arXiv. https://arxiv.org/abs/2502.13023

[3] G. Jocher, A. Chaurasia, and J. Qiu, Ultralytics yolov8, https://github.com/ultralytics/ultralytics, version 8.0.0, 2023.
[4] C.-Y. Wang, I.-H. Yeh, and H.-Y. M. Liao, Yolov9: Learning what you want to learn using programmable gradient information, arXiv preprint arXiv:2402.13616, 2024. arXiv: 2402. [3] [5] Wang, H. Chen, L. Liu, et al., Yolov10: Real-time end-to-end object detection, arXiv preprint arXiv:2405.14458, 2024. arXiv: 2405.14458 [cs.CV].

[6] G. Jocher and J. Qiu, Ultralytics yolo11, https://github.com/ultralytics/ultralytics, version 11.0.0, 2024.
[7] Y. Tian, Q. Ye, and D. Doermann, YOLOv12: Attention-Centric Real-Time Object Detectors, arXiv:2502.12524v1 [cs.CV], 2025.

Acknowledgements

Supported by the Wake Forest University URECA Summer Fellowship

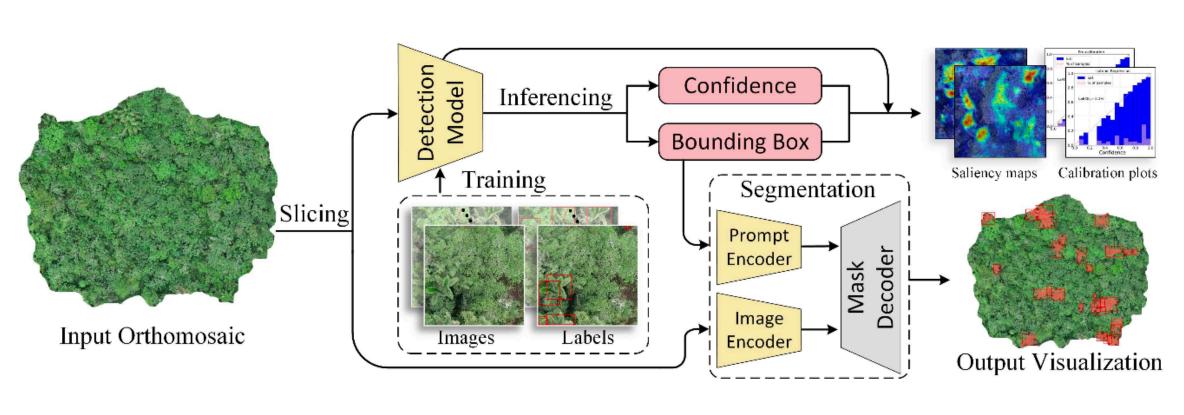
I would like to sincerely thank Dr. Paul Paúca for his invaluable guidance, insightful feedback, and continuous support throughout the summer, which greatly enriched this research experience.

I would also like to thank my colleagues Jason Cui, Debashis Gupta, Aditi Golder, and Mallory Pitts for their collaboration and contributions, without whom this work would not have been possible.

2. Methods

- Original Ecuador Dataset: Our baseline was a dataset of 1,500 images (800x800 pixels) from two reserves in western Ecuador, manually annotated by three experts.
- **New Peru Dataset:** For our new dataset, we used large UAV images (6000x4000 pixels) from Iquitos, Peru. Using Roboflow, these were partitioned into 150 non-overlapping patches, resulting in 294 annotated samples (400x400 pixels), each with a manually labeled bounding box and center point.
- Models & Pipeline: We used the PRISM pipeline and systematically compared five versions of the YOLO model (YOLOv8 to YOLOv12) [3-7] to evaluate its geographic transferability.
- **Training Regimes:** Our experiment focused on two key regimes: an Ecuadorian Baseline trained exclusively on the Ecuador dataset to measure out-of-distribution performance, and a model fine-tuned on a mixed dataset from both Ecuador and Peru(Mixed Data).

Figure 2: PRISM Pipeline Overview: The detection model trained on the Ecuadorian dataset.



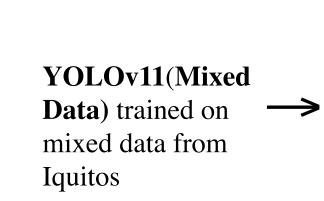
Ecuadorian Palm Tree Iquitos Palm Tree

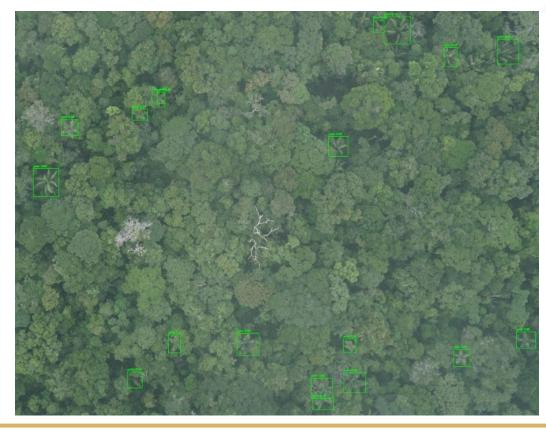
3. Results

- Ecuadorian Baseline Results: The Ecuador-trained models showed low overall performance when applied to the new Peruvian environment.
- Peruvian/Mixed Data: The adapted models saw a huge jump in scores, with the most significant gains in Precision, measures the proportion of correct detections, and Recall, measures the model's ability to find all palms.
- Overall: Regional adaptation is crucial for this type of research. The best-performing model, YOLOv11, achieved a peak mAP@0.5-0.95 of 0.386, a 62% improvement over the best baseline model.

Table 1: I	Table 1: Detection performance of models trained only on Ecuador data.							
Model	Precision	\mathbf{Recall}	F1-score	mAP@0.5	$\mathbf{mAP@0.5\text{-}0.95}$			
YOLOv8	0.366	0.110	0.170	0.229	0.137			
YOLOv9	0.421	0.136	0.206	0.218	0.124			
YOLOv10	0.494	0.127	0.202	0.317	0.179			
YOLOv11	0.443	0.101	0.164	0.269	0.155			
YOLOv12	0.464	0.367	0.410	0.401	0.239			

Table 2: Detection performance of models trained on mixed data from Iquitos.									
Model	Precision	Recall	F1-score	mAP@0.5	mAP@0.5-0.95				
YOLOv8	0.779	0.458	0.577	0.592	0.344				
YOLOv9	0.792	0.432	0.559	0.632	0.382				
YOLOv10	0.677	0.474	0.558	0.612	0.359				
YOLOv11	0.798	0.468	0.590	0.649	0.386				
YOLOv12	0.630	0.481	0.545	0.564	0.340				





4. Conclusions and Future Directions

- **Key Findings:** The Ecuador-trained baseline model failed to generalize to the new Peruvian data. However, fine-tuning it with a small amount of regional data significantly improved its accuracy.
- Limitations & Drawbacks: This work is a crucial first step, but it has limitations. The Peruvian/mixed dataset is relatively small, and we only tested one new region. Therefore, our conclusions are not yet globally generalizable.
- Future Work: Our next steps are to expand this research to include more diverse locations, investigate alternative model designs, and incorporate additional data sources to create a truly scalable tool for global ecological monitoring.