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1. Introduction 2. Methods
 Palms & Why They Matter: Palm trees are * Original Ecuador Dataset: Our baseline was a dataset of 1,500 images (800x800 pixels) from two reserves in western
critical indicators of tropical forest health, Ecuador, manually annotated by three experts.
biodiversity, and human activity. They provide » New Peru Dataset: For our new dataset, we used large UAV images (6000x4000 pixels) from Iquitos, Peru. Using

vital resources for both wildlife and human Roboflow, these were partitioned into 150 non-overlapping patches, resulting in 294 annotated samples (400x400

communities. pixels), each with a manually labeled bounding box and center point.

* The Problem: The ability of automated palm  Models & Pipeline: We used the PRISM pipeline and systematically compared five versions of the YOLO model

detection tools and their ability to generalize to (YOLOVS to YOLOV12) [3-7] to evaluate its geographic transferability.
new regions with different ecological conditions 1s

e Training Regimes: Our experiment focused on two key regimes: an Ecuadorian Baseline trained exclusively on the

unknown. | L .
Ecuador dataset to measure out-of-distribution performance, and a model fine-tuned on a mixed dataset from both

 Our Approach: We apply the preexisting PRISM Ecuador and Peru(Mixed Data).
Pipeline [1], a model previously trained on

Figure 2: PRISM Pipeline Overview: The detection model Ecuadorian Palm Tree Iquitos Palm Tree

Ecuadorian data, to a new region in Iquitos, Peru. : .
trained on the Ecuadorian dataset.

 Main Goal: We evaluate how well the original

model performs and demonstrate that regional

adaptation 1s key to making the pipeline a reliable
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3. Results
. . . _ . Table 1: Detection performance of models trained only on Ecuador data.
¢ Ecuadorlan Basellne Results' The ECuadOr tralned Model Precision Recall Fl-score mAP@0.5 mAPQ@O0.5-0.95
- YOLOv8 0.366 0.110 0.170 0.229 0.137
models showed low overall performance when applied YOLOW 0421 0136 0.206 0218 0194
: : YOLOv10 0.494 0.127 0.202 0.317 0.179
to the new Peruvian environment. YOLOv1l  0.443 0.101 0.164 0.269 0.155
YOLOv12 0.464 0.367 0.410 0.401 0.239
* PeruVlaanXEd Data: The adapted mOdels SAW d huge Table 2: Detection performance of models trained on mixed data from Iquitos.
. . . . ) ) . Model Precision Recall Fl-score mAP@0.5 mAP@Q0.5-0.95
jump 1n scores, with the most significant gains in YOLOVS 0.779 0458  0.577 0.592 0.344
o . . YOLOV9 0.792 0.432 0.559 0.632 0.382
Precision, measures the proportion of correct detections, YOLOv10 0677 0474  0.558 0.612 0.359
- YOLOv1l  0.798 0.468 0.590 0.649 0.386
and Recall, measures the model's ability to find all YOLOvI2 0630  0.481  0.545 0.564 0.340
palms. *

e Overall: Regional adaptation 1s crucial for this type of

research. The best-performing model, YOLOv11, gg‘;}ot:aliigi;ed .
achieved a peak mAP@0.5-0.95 of 0.386, a 62% Eﬁfgsdata from

improvement over the best baseline model.
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