
• Palms & Why They Matter: Palm trees are 
critical indicators of tropical forest health, 
biodiversity, and human activity. They provide 
vital resources for both wildlife and human 
communities.

• The Problem: The ability of automated palm 
detection tools and their ability to generalize to 
new regions with different ecological conditions is 
unknown.

• Our Approach: We apply the preexisting PRISM 

Pipeline [1] , a model previously trained on 
Ecuadorian data, to a new region in Iquitos, Peru.

• Main Goal: We evaluate how well the original 
model performs and demonstrate that regional 
adaptation is key to making the pipeline a reliable 
tool for global monitoring.
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• Key Findings: The Ecuador-trained baseline model failed to generalize to the new Peruvian data. However, fine-tuning it 

with a small amount of regional data significantly improved its accuracy. 

• Limitations & Drawbacks: This work is a crucial first step, but it has limitations. The Peruvian/mixed dataset is 
relatively small, and we only tested one new region. Therefore, our conclusions are not yet globally generalizable.

• Future Work: Our next steps are to expand this research to include more diverse locations, investigate alternative model 
designs, and incorporate additional data sources to create a truly scalable tool for global ecological monitoring.
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• Original Ecuador Dataset: Our baseline was a dataset of 1,500 images (800x800 pixels) from two reserves in western 
Ecuador, manually annotated by three experts. 

• New Peru Dataset: For our new dataset, we used large UAV images (6000x4000 pixels) from Iquitos, Peru. Using 
Roboflow, these were partitioned into 150 non-overlapping patches, resulting in 294 annotated samples (400x400 
pixels), each with a manually labeled bounding box and center point.

• Models & Pipeline: We used the PRISM pipeline and systematically compared five versions of the YOLO model 
(YOLOv8 to YOLOv12) [3-7] to evaluate its geographic transferability. 

• Training Regimes: Our experiment focused on two key regimes: an Ecuadorian Baseline trained exclusively on the 
Ecuador dataset to measure out-of-distribution performance, and a model fine-tuned on a mixed dataset from both 
Ecuador and Peru(Mixed Data).

3. Results

Iquitos Palm TreeEcuadorian Palm TreeFigure 2: PRISM Pipeline Overview: The detection model 
trained on the Ecuadorian dataset.

• Ecuadorian Baseline Results: The Ecuador-trained 
models showed low overall performance when applied 
to the new Peruvian environment. 

• Peruvian/Mixed Data: The adapted models saw a huge 
jump in scores, with the most significant gains in 
Precision, measures the proportion of correct detections, 
and Recall, measures the model's ability to find all 
palms.

• Overall: Regional adaptation is crucial for this type of 
research. The best-performing model, YOLOv11, 
achieved a peak mAP@0.5-0.95 of 0.386, a 62% 
improvement over the best baseline model.
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4. Conclusions and Future Directions

Figure 1: Drone in Jungle [2]
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